Forstliches Umweltmonitoring

Ulrike Talkner, Caroline Klinck und Uwe Paar

https://doi.org/10.5281/zenodo.10082708

Das Forstliche Umweltmonitoring hat eine langjährige Geschichte und eröffnet damit einen guten Einblick in die Veränderung der Waldökosysteme. Die Umweltbedingungen haben sich in den vergangenen Jahrzehnten kontinuierlich verändert, aber das Ausmaß und die Geschwindigkeit der aktuellen Klimaveränderungen sind in der Geschichte des Forstlichen Umweltmonitorings einmalig. Die Waldschäden zu Zeiten des sauren Regens waren deutlich zu sehen, doch übertreffen die aktuellen Schäden in bestimmten Regionen und für einige Baumarten das damalige Ausmaß. In den 1990er Jahren wurden erfolgreich politische Maßnahmen ergriffen, um die versauernden Einträge in die Wälder zu minimieren. Nun stellt sich die Frage, ob wir auch erfolgreich in der Eindämmung des Klimawandels sein werden. Fest steht, dass die Reduzierung der CO₂-Emissionen notwendig ist, um den menschengemachten Klimawandel abzumildern und damit den Zustand des Waldes zu stabilisieren.

Das Forstliche Umweltmonitoring ist aus der Waldökosystemforschung entstanden. Die Ergebnisse der Untersuchungen dienen der Erarbeitung von Entscheidungshilfen für die forstliche Praxis und der Beratung der Politik auf fachlicher Grundlage.

Grundsätzlich werden im Forstlichen Umweltmonitoring folgende Kategorien unterschieden:

- Level I: waldflächenrepräsentative Übersichtserhebungen auf einem systematischen Stichprobenraster (Waldzustands- und Bodenzustandserhebung)
- Level II: Untersuchung von ausgewählten Waldökosystemen mit erhöhter Messintensität (Intensives Forstliches Umweltmonitoring)
- Level III: Erforschung der Auswirkungen von Waldbewirtschaftungsmaßnahmen auf den Nährstoff- und Wasserhaushalt von Wäldern (Experimentalflächen)

Die Verknüpfung und Kombination von Level I, II und III eröffnet die Möglichkeit der Übertragung von Ergebnissen aus dem Forstlichen Umweltmonitoring auf Waldflächen ohne Beobachtungen (Regionalisierung). Für die Beantwortung von komplexen forst- und umweltpolitischen Fragen ist die Vernetzung aller drei Kategorien des Forstlichen Umweltmonitorings zweckmäßig.

Die methodischen Instrumente des Forstlichen Umweltmonitorings sind europaweit nach den Grundsätzen des ICP Forests (2016) harmonisiert. Die Waldzustandserhebung (WZE) liefert seit mittlerweile 40 Jahren als Übersichtserhebung Informationen zur Vitalität der Waldbäume unter dem Einfluss sich ändernder Umweltbedingungen. Das Stichprobenraster der Waldzustandserhebung ist darauf ausgelegt, die gegenwärtige Situation des Waldes landesweit repräsentativ abzubilden. Das Ergebnis ist das Gesamtbild des Waldzustandes für das Bundesland. Die Stichprobe der Waldzustandserhe-

bung vermittelt ein zahlenmäßiges Bild zu dem Einfluss von Stürmen, Witterungsextremen sowie Insekten- und Pilzbefall. Lokale Befunde, wie sturmgefallene Bäume oder ein extremer Befall der Kiefer durch Pilze, können allerdings von dem landesweiten Ergebnis abweichen. Verschiedene Auswertungen belegen eine hohe Repräsentativität des Rasternetzes für verschiedene Fragestellungen.

Waldzustandserhebung – Methodik und Durchführung

Aufnahmeumfang

Die Waldzustandserhebung erfolgt auf mathematisch-statistischer Grundlage. Die Rasterweite des landesweiten Stichprobennetzes beträgt seit 2005 8 km x 8 km, für Buche und Eiche werden zusätzliche Erhebungspunkte im 4 km x 4 km-Raster durchgeführt, wenn 2004 mindestens 6 Buchen oder Eichen am WZE-Punkt vorhanden waren. Nach einer Rasterüberprüfung im Frühjahr 2020 wurden 12 weitere WZE-Punkte in das 8 km x 8 km-Raster integriert, so dass jetzt inklusive der Verdichtung 312 Erhebungspunkte zum Stichprobenkollektiv gehören, von denen in diesem Jahr 287 Erhebungspunkte in die Inventur einbezogen werden konnten. Dieser Aufnahmeumfang ermöglicht repräsentative Aussagen zum Waldzustand auf Landesebene sowie Zeitreihen für die Baumarten Buche, Eiche, Fichte, Kiefer und die Gruppen der anderen Laub- und Nadelbäume. Die Aufnahmen zur Waldzustandserhebung erfolgten im Juli und August 2023. Sie sind mit qualitätssichernden Maßnahmen sorgfältig überprüft. Für den Parameter mittlere Kronenverlichtung zeigt die Tabelle auf Seite 7 den Standardfehler und die 95 %-Konfidenzintervalle (Vertrauensbereiche) für die Baumarten und Altersgruppen der WZE-Stichprobe 2023. Je weiter der Vertrauensbereich, desto unschärfer sind die Aussagen. Ab einem Standardfehler von > 5 werden die Werte in den Grafiken nicht mehr dargestellt. Die Weite des Vertrauensbereiches wird im Wesentlichen beeinflusst durch die Anzahl der Stichprobenpunkte in der jeweiligen Auswerteeinheit und

WZE-Aufnahmeteams bei der Schulung im Juli 2023

die Streuung der Kronenverlichtungswerte. Für relativ homogene Auswerteeinheiten (z. B. Kiefer bis 60 Jahre) mit relativ gering streuenden Kronenverlichtungen sind enge Konfidenzintervalle auch bei einer geringen Stichprobenanzahl sehr viel leichter zu erzielen als für heterogene Auswerteeinheiten (z. B. sonstiges Laubholz über 60 Jahre), die sowohl in der Altersstruktur als auch in den Kronenverlichtungswerten ein breites Spektrum umfassen.

Aufnahmeparameter

Bei der Waldzustandserhebung erfolgt eine visuelle Beurteilung des Kronenzustandes der Waldbäume, denn Bäume reagieren auf Umwelteinflüsse u. a. mit Änderungen in der Belaubungsdichte und der Verzweigungsstruktur. Wichtigstes Merkmal ist die Kronenverlichtung der Waldbäume, deren Grad in 5 %-Stufen für jeden Stichprobenbaum erfasst wird. Die Kronenverlichtung wird unabhängig von den Ursachen bewertet, lediglich mechanische Schäden (z. B. das Abbrechen von Kronenteilen durch Wind) gehen nicht in die Berechnung der Ergebnisse der Waldzustandserhebung ein. Die Kronenverlichtung ist ein unspezifisches Merkmal, aus dem nicht unmittelbar auf die Wirkung von einzelnen Stressfaktoren geschlossen werden kann. Sie ist daher geeignet, allgemeine Belastungsfaktoren der Wälder aufzuzeigen. Bei der Bewertung der Ergebnisse stehen nicht die absoluten

Baumanzahl, Plotanzahl, Raster sowie Standardfehler und 95 %-Konfidenzintervall der Kronenverlichtung für alle Baumarten- und Altersgruppen der Waldzustandserhebung 2023 in Niedersachsen. Das 95 %-Konfidenzintervall (=Vertrauensbereich) gibt den Bereich an, in dem der wahre Mittelwert mit einer Wahrscheinlichkeit von 95 % liegt. Das berechnete Konfidenzintervall kann jenseits der logischen Parametergrenzwerte (0 bzw. 100) liegen.

Baumarten- gruppe	Alters- gruppe	Anzahl Bäume	Anzahl Plots	Raster	Standard- fehler	95%- Konfidenz- intervall
Buche	alle Alter	2238	154	4x4 km	1,4	24–29
	bis 60 Jahre	327	28	4x4 km	1,1	5–10
	über 60 Jahre	1911	133	4x4 km	1,4	27–32
Eiche	alle Alter	1062	114	4x4 km	1,7	26–33
	bis 60 Jahre	183	29	4x4 km	1,6	6–13
	über 60 Jahre	879	94	4x4 km	1,4	31–36
Fichte	alle Alter	363	43	8x8 km	2,5	25–35
	bis 60 Jahre	131	16	8x8 km	5,1	14–36
	über 60 Jahre	232	28	8x8 km	2,6	27–38
Kiefer	alle Alter	1529	86	8x8 km	0,8	15–18
	bis 60 Jahre	272	17	8x8 km	1,6	9–16
	über 60 Jahre	1257	73	8x8 km	0,8	16–19
andere Laubbäume	alle Alter bis 60 Jahre über 60 Jahre	640 333 307	75 37 42	8x8 km 8x8 km 8x8 km	2,2 1,6 4,1	16–25 16–23 13–30
andere Nadelbäume	alle Alter bis 60 Jahre über 60 Jahre	420 172 248	47 19 29	8x8 km 8x8 km 8x8 km	2,1 2,6 2,9	15–23 11–22 15–27
alle Baumarten	alle Alter bis 60 Jahre über 60 Jahre	3888 1083 2805	162 60 132	8x8 km 8x8 km 8x8 km	0,9 1,2 1,1	19–23 14–19 21–25

Verlichtungswerte im Vordergrund, sondern die mittel- und langfristigen Trends der Kronenentwicklung. Zusätzlich zur Kronenverlichtung werden weitere sichtbare Merkmale an den Probebäumen wie der Vergilbungsgrad der Nadeln und Blätter, die aktuelle Fruchtbildung sowie Insekten- und Pilzbefall erfasst.

Mittlere Kronenverlichtung

Die mittlere Kronenverlichtung ist der arithmetische Mittelwert der in 5 %-Stufen erhobenen Kronenverlichtungswerte der Einzelbäume.

Starke Schäden

Unter den starken Schäden werden Bäume mit Kronenverlichtungen über 60 % (inkl. abgestorbener Bäume) sowie Bäume mittlerer Verlichtung (30–60 %), die zusätzlich Vergilbungen über 25 % aufweisen, zusammengefasst.

Absterberate

Die Absterberate ergibt sich aus den Bäumen, die zwischen der Erhebung im Vorjahr und der aktuellen Erhebung abgestorben sind und noch am Stichprobenpunkt stehen, bezogen auf die im Vorjahr noch lebenden Bäume.

Durch Windwurf und Durchforstung ausgefallene Bäume gehen nicht in die Absterberate, sondern in die Ausfallrate ein.

Ausfallrate

Das Inventurverfahren der WZE ist darauf ausgelegt, die aktuelle Situation der Waldbestände unter realen (Bewirtschaftungs-) Bedingungen abzubilden. Daher scheidet in jedem Jahr ein Teil der Stichprobenbäume aus dem Aufnahmekollektiv aus. Der Ausfallgrund wird für jeden Stichprobenbaum dokumentiert. Gründe für den Ausfall sind u. a. Durchforstungsmaßnahmen, methodische Gründe (z. B., wenn der Stichprobenbaum nicht mehr zu den Baumklassen 1–3 gehört), Sturmschäden oder außerplanmäßige Nutzung aufgrund von Insektenschäden.

Dort, wo an den WZE-Punkten Stichprobenbäume ausfallen, werden nach objektiven Vorgaben Ersatzbäume ausgewählt. Sind aufgrund großflächigen Ausfalls der Stichprobenbäume keine geeigneten Ersatzbäume vorhanden, ruht der WZE-Punkt, bis eine Wiederbewaldung erfolgt ist.

Die im Bericht aufgeführte Ausfallrate ergibt sich aus den infolge von Sturmschäden, Trockenheit und Insekten- oder Pilzbefall (insbesondere durch Borkenkäfer) am Stichprobenpunkt entnommenen Bäumen.

Literatur

ICP Forests (2016): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE, ICP Forests, Hamburg